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The quantum-mechanical box effect
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Abstract. A particle moves in one spatial dimension in an attractive symmetric negative
potential vf (x), and obeys non-relativistic quantum mechanics. If the system is enclosed in
a finite box [-¢, £], then, unlike the situation iR, the ground-state energyy is negative only
when the coupling is sufficiently large. General upper- and lower-bound formulae are derived
for the critical couplingv. which corresponds t&, = 0. Some generalizations are derived for
potentials which change sign and for unsymmetric unimodal potentials.

1. Introduction

We consider the problem of a single particle in one dimension which moves in an attractive
symmetric potentiabf(x). For convenience we assume that the potential is finite, that
f(x) <0, and thath = 2m = 1. The term ‘attractive’ means that the potential sh#ie)

is monotone non-decreasing as we move away from 0. Thus the HamiltoniarH may

be written

H=-A+vf(x). (1.12)

It is a well known elementary result of quantum mechanicRithat for every value of

v > 0, H has a discrete eigenvald® < 0 at the bottom of the spectrum. This result can be
proved in a particular case by applying a trial functipnsay a Gaussian, and minimizing
the Rayleigh quotientH) = (¢, Hp)/(¢, ¢) with respect to a scale parameter: if the trial
function is appropriate, then however smaliis chosen, we can always find a value of
the scale such thatH) < 0. A more general result can be established by noting that for
all v > 0 the potential lies entirelypelow a ‘comparison’ negative square well; and in
one dimension such a square well always has at least one discrete eigenvalue [1]. A more
abstract theorem to the same effect and only requiring that the potenti®& ¢GinR?) be
non-positive is proved in [2]. If the system is enclosed in an impenetrable box, this result
is no longer true: there now exists a critical valye> 0 of the coupling such that the
discrete eigenvalu&j at the bottom of the spectrum is negative only it v,.

Possible initial surprise at this claim is immediately lessened by the following three
elementary considerations: (i) the variational characterization of the spectrum would lead
us to expect that the spatial contraction fri&o [—¢, ¢] is guaranteed to move the spectrum
up; (i) an argument based on Heisenberg’s (uncertainty) inequality suggests tliais as
reduced, the kinetic energy is increased, without a commensurate decrease in the potential
energy, thusEy would eventually have to become positive; (iii) even when the potential is
not constant, the spectrum of the particle in a box is entirely discrete and the Kalu@
is therefore no longer special. However, it is useful to have formulae for bounds on the
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critical couplingv. which characterizes the ‘box effect’, the impact on the ground-state
energy of solving the problem in the box{, ¢] instead of in the real lindR. We would
require these bounds to obey the natural correspondence limit lijfv.) = 0.

The bounds we shall find are based on two earlier results: the exact solution of the
square well in a box [3] and two recent comparison theorems [4], which allow us to
predict spectral ordering of the ground-state energies even in cases where the graphs of the
comparison potentials cross over each other. We suppose that the-bo |s fixed and
we denote byE = W(a, d) the negative eigenvalue at the bottom of the spectrum of the
square-well problem

H=—A+dw(k) 1.2)
where the potential shape(x) is given by
w(x) = { ~1 o ks (1.3)
0 a < |x| <4

Flugge [3] provides the following expression for this eigenvalue:

katanka = yacothy (¢ — a) (1.4)
where

E=W(a,d) =—x? and k2 =d— x2

The bottom of the spectrum df is always a discrete eigenvaldebut, as it stands, (1.4)
is presumptuous: we getreegativeeigenvalue given by this formula only if the well depth
d is sufficiently large. We can find the critical square-well couplihgoy taking the limit
of (1.4) asy — 0. This yields the following transcendental formula tbe d.:

a
ftand =
L

where6 = dia < *. (1.5)
—a 2

A numerical example is given by
a=1 =2 d. =0.74017= E = 0. (1.6)

The tools we need to compare a given potentjaly) with the soluble potentialw(x)
are the refined comparision theorems of [4]. For convenience we summarize the two results
we need by reference to the example with= 2 illustrated in figure 1. The figure shows
the exponential potential with shag&x) = —e*! and couplingy = 5 together with two
square wellsw; ~ (a, v) andw;, ~ (b, d): the lower square well; has the same area as
doesvf (x), and the upper square wedh has the same area as that parv6fx) satisfying
|x| < b. Clearly the upper square well is not uniquely specified (the ‘best’ one will be
chosen later). However, by the theorems of [4]), the Bdimger eigenvalues generated by
these three potentials are ordered

W(a,v) < E(v) < W(b,d). a.7)

Thus the eigenvalué& corresponding to the given potential is bracketed by two known
exact eigenvalues. Most of our results stem from these basic inequalities. The class of
potential shapes we are able to treat by this elementary reasoning consists of those potentials
which are ‘like’ the above exponential illustration in the following specific senses: (i)
f(x) is symmetric, (ii) f(0) < 0, (iii) f(x) is monotone non-decreasing for> 0, (iv)

lim,. o f(x) =0, (V) |f(x)| has (finite) area. The results are, of course, invariant with
respect to vertical and horizontal shifts in space. Some other immediate generalizations are
discussed in the conclusion.
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Figure 1. The exponential potential shaptx) = —e ! with couplingv = 5 together with

two square wellsw1 ~ (a, v) andwy ~ (b, d) in the box [-¢, ¢] = [—2, 2]: the lower square
well has the same area as dag&x), and the upper square well has the same area as that
part of vf (x) satisfying|x| < b. According to the theorems in [4] the Sddinger eigenvalues
generated by these three potentials are ord&éd, v) < E(v) < W(b, d).

2. Sufficient conditions for Eg > 0

If W(a,v)=0in(1.7), thenE(v) > 0, which means that there are no negative eigenvalues.
For the lower bound¥ (a, v), the area of the square well is the same as the are# @f).

For convenience we shall work with positive areas and defirte be the area under the
shape f(x). Thus, since we requireA = 2v|f(0)|a, we have

14
A=A(E)=/£|f(X)IdX=2If(0)Ia (2.1)

where the functional Iorm ofA has been defined for use in section 3. From (1.5) with
d =v|f(0)] andd = dza we find
1+ % < 6coto + 02 = AV
— < _—
2 2
in which the equality is exact and the elementary inequality approximates, for our present

purpose, in the ‘right direction’. From (2.2) we deduce the following lower bound for the
critical coupling associated witlf (x):

8/ f (0|
vezob=— "2 2.3
AL f(O)] —A) (23)
Thus we have < vt = E(v) > 0. We note that lim. . (vL) = 0. As a (self-referential)
example, if we apply this general formula to the square well itself witk ¢ = 1 and

¢ = 2, we obtain

2.2)

2=vl <v.=0740 (2.9)
For the exponential potential exhibited in figure 1 we obtain, again from (2.3),
0.738= v" < v, = 1.020 (2.5)

in which the value ofv, was found by solving Scbdinger’s equation numerically.
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3. Sufficient conditions for Eg < 0

We now find our best upper bound to the critical couplingby setting to zero the
minimum of W (b, d) subject to the area constrainA(b) = 2bd. From (1.5) we have
with W (b, d) = 0 for the upper comparison square well ahek dzb

2

20
¢bd = 6 cotb + 6% < 1+? (3.1)

where the inequality is elementary and, again, approximates in the ‘right direction’.
By this we mean that ifv is chosen so thathd > 1 + 20?/3, then it follows that
E(w) < W(b,d) < 0, that is to say, the ground-state eigenvalue is negative. From (3.1) we
deduce the upper bound 1o

1
< ¢ _b
AD)(; —3)
or, sinceb is not determined, we may optimize with respecbtto obtain

v 1
Ve < v = I’JLIIQ {A(b)(g - %) } . 3.2)

Ve

We note that lin, o (vY) = 0. We shall again apply our general formula to the square well
and to the exponential potential. In the case of the square well itselfanithd = 1 and
¢ = 2, we obtain

0.740= v, < vY = 3. (3.3)
For the exponential potential exhibited in figure 1 we obtaiid) = 2(1 — e”) and from
(3.2)

ve = 1.020 < vV = 1.183 (3.4)

where the critical value ob is b = 1.074.

4. Conclusion

If a bound system with negative energy is put in a box, then the energy increases and
will become positive unless the couplingis sufficiently large. We have provided general
upper and lower estimates for the critical couplingdefined by this situation. The general
formulae are easy to apply to any given problem. As another example, if the potential shape
corresponds to the Gauss potentigt) = —e*, and¢ = 2, then we find from (2.3), (3.2),

and numerical integration of Sattinger’s equation (fop,..)

0.727= v- < v, =0.887 < v¥ = 1.004 4.1)

Both of the bounds we have found can immediately be generalized. In the case of
we may allow the potential shapé(x) to be positive for, saylx| > ¢ < £. By replacing
f(x) by anothedower comparison potential which agrees wiftix) for |x| < ¢ but is zero
for |x| > ¢, and by redefiningd to be equal to (the absolute value of) only the negative
part of the area off (x), we see that the bound (2.3) stands for this more general class of
symmetric unimodal potentials.

For the upper bouna? we now retain the original assumption that the potential is
negative but we allow it to be unsymmetrical in a controlled manner. That is to say, we
assume that the potential has a finite minimum vafy@) and that in directions away from
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x = 0 the potential is non-decreasing (and not altogether constant). We then decompose
the potential into its fundamental even and odd components:

fO) =3(f@) + fF0)) + 2(f(0) = f(=x) = fr(x) + f-(x). (4.2)

We denote the bottom of the spectrum of the Hamiltoilan= —A+vf, (x) by E (v) and
let the exact normalized ground state for this problem be the (symmetric) fungtion).
It then follows from the Rayleigh—Ritz principle that

E(w) < (Y4, HYy) = (Y4, Hyyy) = EL (v). (4.3)

The first equality on the right-hand side of (4.2) follows since, by symmeéiry, f_v,) =

0. Thus the symmetrized problem provides an upper comparison problem to which the
inequality (3.2) applies. Moreover, and again by symme#y,) = A, (b). Hence the
bound (3.2) applies to this more general problem without further change.

The main purpose of this paper is to point out the box effect and to characterize it
guantitatively for a class of potentials that is sufficiently general to be useful and also
sufficiently well defined that the bounds can be simply expressed. Although very specific
detailed questions concerning problems of this sort can be swiftly resolved today with the
aid of a computer, it is always useful to have general formulae.
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