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Abstract. A particle moves in one spatial dimension in an attractive symmetric negative
potentialvf (x), and obeys non-relativistic quantum mechanics. If the system is enclosed in
a finite box [−`, `], then, unlike the situation inR, the ground-state energyE0 is negative only
when the couplingv is sufficiently large. General upper- and lower-bound formulae are derived
for the critical couplingvc which corresponds toE0 = 0. Some generalizations are derived for
potentials which change sign and for unsymmetric unimodal potentials.

1. Introduction

We consider the problem of a single particle in one dimension which moves in an attractive
symmetric potentialvf (x). For convenience we assume that the potential is finite, that
f (x) 6 0, and thath̄ = 2m = 1. The term ‘attractive’ means that the potential shapef (x)

is monotone non-decreasing as we move away fromx = 0. Thus the HamiltonianH may
be written

H = −1+ vf (x). (1.1)

It is a well known elementary result of quantum mechanics inR that for every value of
v > 0,H has a discrete eigenvalueE0 < 0 at the bottom of the spectrum. This result can be
proved in a particular case by applying a trial functionφ, say a Gaussian, and minimizing
the Rayleigh quotient〈H 〉 = (φ,Hφ)/(φ, φ) with respect to a scale parameter: if the trial
function is appropriate, then however smallv is chosen, we can always find a value of
the scale such that〈H 〉 < 0. A more general result can be established by noting that for
all v > 0 the potential lies entirelybelow a ‘comparison’ negative square well; and in
one dimension such a square well always has at least one discrete eigenvalue [1]. A more
abstract theorem to the same effect and only requiring that the potential (inR or R2) be
non-positive is proved in [2]. If the system is enclosed in an impenetrable box, this result
is no longer true: there now exists a critical valuevc > 0 of the coupling such that the
discrete eigenvalueE0 at the bottom of the spectrum is negative only ifv > vc.

Possible initial surprise at this claim is immediately lessened by the following three
elementary considerations: (i) the variational characterization of the spectrum would lead
us to expect that the spatial contraction fromR to [−`, `] is guaranteed to move the spectrum
up; (ii) an argument based on Heisenberg’s (uncertainty) inequality suggests that, as` is
reduced, the kinetic energy is increased, without a commensurate decrease in the potential
energy, thusE0 would eventually have to become positive; (iii) even when the potential is
not constant, the spectrum of the particle in a box is entirely discrete and the valueE = 0
is therefore no longer special. However, it is useful to have formulae for bounds on the
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critical coupling vc which characterizes the ‘box effect’, the impact on the ground-state
energy of solving the problem in the box [−`, `] instead of in the real lineR. We would
require these bounds to obey the natural correspondence limit lim`→∞(vc) = 0.

The bounds we shall find are based on two earlier results: the exact solution of the
square well in a box [3] and two recent comparison theorems [4], which allow us to
predict spectral ordering of the ground-state energies even in cases where the graphs of the
comparison potentials cross over each other. We suppose that the box [−`, `] is fixed and
we denote byE = W(a, d) the negative eigenvalue at the bottom of the spectrum of the
square-well problem

H = −1+ dw(x) (1.2)

where the potential shapew(x) is given by

w(x) =
{

−1 |x| 6 a

0 a < |x| 6 `.
(1.3)

Flügge [3] provides the following expression for this eigenvalue:

ka tanka = χa cothχ(`− a) (1.4)

where

E = W(a, d) = −χ2 and k2 = d − χ2.

The bottom of the spectrum ofH is always a discrete eigenvalueE but, as it stands, (1.4)
is presumptuous: we get anegativeeigenvalue given by this formula only if the well depth
d is sufficiently large. We can find the critical square-well couplingdc by taking the limit
of (1.4) asχ → 0. This yields the following transcendental formula ford = dc:

θ tanθ = a

`− a
whereθ = d

1
2a <

π

2
. (1.5)

A numerical example is given by

a = 1 ` = 2 dc
.= 0.740 17⇒ E = 0. (1.6)

The tools we need to compare a given potentialvf (x) with the soluble potential dw(x)
are the refined comparision theorems of [4]. For convenience we summarize the two results
we need by reference to the example with` = 2 illustrated in figure 1. The figure shows
the exponential potential with shapef (x) = −e−|x| and couplingv = 5 together with two
square wells,w1 ∼ (a, v) andw2 ∼ (b, d): the lower square wellw1 has the same area as
doesvf (x), and the upper square wellw2 has the same area as that part ofvf (x) satisfying
|x| 6 b. Clearly the upper square well is not uniquely specified (the ‘best’ one will be
chosen later). However, by the theorems of [4]), the Schrödinger eigenvalues generated by
these three potentials are ordered

W(a, v) < E(v) < W(b, d). (1.7)

Thus the eigenvalueE corresponding to the given potential is bracketed by two known
exact eigenvalues. Most of our results stem from these basic inequalities. The class of
potential shapes we are able to treat by this elementary reasoning consists of those potentials
which are ‘like’ the above exponential illustration in the following specific senses: (i)
f (x) is symmetric, (ii)f (0) < 0, (iii) f (x) is monotone non-decreasing forx > 0, (iv)
limx→∞ f (x) = 0, (v) |f (x)| has (finite) area. The results are, of course, invariant with
respect to vertical and horizontal shifts in space. Some other immediate generalizations are
discussed in the conclusion.
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Figure 1. The exponential potential shapef (x) = −e−|x| with coupling v = 5 together with
two square wells,w1 ∼ (a, v) andw2 ∼ (b, d) in the box [−`, `] = [−2, 2]: the lower square
well has the same area as doesvf (x), and the upper square well has the same area as that
part of vf (x) satisfying|x| 6 b. According to the theorems in [4] the Schrödinger eigenvalues
generated by these three potentials are orderedW(a, v) < E(v) < W(b, d).

2. Sufficient conditions for E0 > 0

If W(a, v) = 0 in (1.7), thenE(v) > 0, which means that there are no negative eigenvalues.
For the lower boundW(a, v), the area of the square well is the same as the area ofvf (x).
For convenience we shall work with positive areas and defineA to be the area under the
shapef (x). Thus, since we requirevA = 2v|f (0)|a, we have

A = A(`) =
∫ `

−`
|f (x)| dx = 2|f (0)|a (2.1)

where the functional form ofA has been defined for use in section 3. From (1.5) with
d = v|f (0)| andθ = d

1
2a we find

1 + θ2

2
< θ cotθ + θ2 = Av`

2
(2.2)

in which the equality is exact and the elementary inequality approximates, for our present
purpose, in the ‘right direction’. From (2.2) we deduce the following lower bound for the
critical coupling associated withf (x):

vc > vLc = 8|f (0)|
A(4`|f (0)| − A)

. (2.3)

Thus we havev < vLc ⇒ E(v) > 0. We note that lim̀→∞(vLc ) = 0. As a (self-referential)
example, if we apply this general formula to the square well itself witha = d = 1 and
` = 2, we obtain

2
3 = vLc < vc

.= 0.740. (2.4)

For the exponential potential exhibited in figure 1 we obtain, again from (2.3),

0.738
.= vLc < vc

.= 1.020. (2.5)

in which the value ofvc was found by solving Schrödinger’s equation numerically.
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3. Sufficient conditions for E0 < 0

We now find our best upper bound to the critical couplingvc by setting to zero the
minimum of W(b, d) subject to the area constraintvA(b) = 2bd. From (1.5) we have
with W(b, d) = 0 for the upper comparison square well andθ = d

1
2b

`bd = θ cotθ + θ2 < 1 + 2θ2

3
(3.1)

where the inequality is elementary and, again, approximates in the ‘right direction’.
By this we mean that ifv is chosen so that̀ bd > 1 + 2θ2/3, then it follows that
E(v) < W(b, d) < 0, that is to say, the ground-state eigenvalue is negative. From (3.1) we
deduce the upper bound tovc

vc <
1

A(b)( `2 − b
3)

or, sinceb is not determined, we may optimize with respect tob to obtain

vc < vUc = min
b<`

{
1

A(b)( `2 − b
3)

}
. (3.2)

We note that lim̀→∞(vUc ) = 0. We shall again apply our general formula to the square well
and to the exponential potential. In the case of the square well itself witha = d = 1 and
` = 2, we obtain

0.740
.= vc < vUc = 3

4. (3.3)

For the exponential potential exhibited in figure 1 we obtainA(b) = 2(1 − e−b) and from
(3.2)

vc
.= 1.020< vUc

.= 1.183 (3.4)

where the critical value ofb is b̂
.= 1.074.

4. Conclusion

If a bound system with negative energy is put in a box, then the energy increases and
will become positive unless the couplingv is sufficiently large. We have provided general
upper and lower estimates for the critical couplingvc defined by this situation. The general
formulae are easy to apply to any given problem. As another example, if the potential shape
corresponds to the Gauss potentialg(x) = −e−x2

, and` = 2, then we find from (2.3), (3.2),
and numerical integration of Schrödinger’s equation (forvc)

0.727
.= vLc < vc

.= 0.887< vUc
.= 1.004. (4.1)

Both of the bounds we have found can immediately be generalized. In the case ofvLc
we may allow the potential shapef (x) to be positive for, say,|x| > q < `. By replacing
f (x) by anotherlower comparison potential which agrees withf (x) for |x| < q but is zero
for |x| > q, and by redefiningA to be equal to (the absolute value of) only the negative
part of the area off (x), we see that the bound (2.3) stands for this more general class of
symmetric unimodal potentials.

For the upper boundvUc we now retain the original assumption that the potential is
negative but we allow it to be unsymmetrical in a controlled manner. That is to say, we
assume that the potential has a finite minimum valuef (0) and that in directions away from
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x = 0 the potential is non-decreasing (and not altogether constant). We then decompose
the potential into its fundamental even and odd components:

f (x) = 1
2(f (x)+ f (−x))+ 1

2(f (x)− f (−x)) = f+(x)+ f−(x). (4.2)

We denote the bottom of the spectrum of the HamiltonianH+ = −1+vf+(x) byE+(v) and
let the exact normalized ground state for this problem be the (symmetric) functionψ+(x).
It then follows from the Rayleigh–Ritz principle that

E(v) 6 (ψ+, Hψ+) = (ψ+, H+ψ+) = E+(v). (4.3)

The first equality on the right-hand side of (4.2) follows since, by symmetry,(ψ+, f−ψ+) =
0. Thus the symmetrized problem provides an upper comparison problem to which the
inequality (3.2) applies. Moreover, and again by symmetry,A(b) = A+(b). Hence the
bound (3.2) applies to this more general problem without further change.

The main purpose of this paper is to point out the box effect and to characterize it
quantitatively for a class of potentials that is sufficiently general to be useful and also
sufficiently well defined that the bounds can be simply expressed. Although very specific
detailed questions concerning problems of this sort can be swiftly resolved today with the
aid of a computer, it is always useful to have general formulae.

Acknowledgment

Partial financial support of this work under grant no GP3438 from the Natural Sciences and
Engineering Research Council of Canada is gratefully acknowledged.

References

[1] Galindo A and Pascual P 1990Quantum Mechanicsvol I (New York: Springer), square wells in one dimension
are discussed on p 136

[2] Reed M and Simon B 1978Methods of Modern Mathematical Physics IV: Analysis of Operators(New York:
Academic), theorem XIII.11 on p 100 establishes the existence of at least one negative eigenvalue (in one
or two dimensions) for any positive value of the coupling provided only that the potential is non-positive

[3] Flügge S 1974Practical Quantum Mechanics(New York: Springer), the square well in a box is discussed on
p 52

[4] Hall R L 1992 J. Phys. A: Math. Gen.25 4459


